
 ibaPDA-Plugin
 Custom Functions for ibaPDA

 Manual
 Issue 2.3

 Measurement Systems for Industry and Energy
 www.iba-ag.com

2

Manufacturer

iba AG

Koenigswarterstrasse 44

90762 Fuerth

Germany

Contacts

Main office +49 911 97282-0

Fax +49 911 97282-33

Support +49 911 97282-14

Engineering +49 911 97282-13

E-mail iba@iba-ag.com

Web www.iba-ag.com

Unless explicitly stated to the contrary, it is not permitted to pass on or copy this document, nor
to make use of its contents or disclose its contents. Infringements are liable for compensation.

© iba AG 2023, All rights reserved.

The content of this publication has been checked for compliance with the described hardware
and software. Nevertheless, discrepancies cannot be ruled out, and we do not provide guaran-
tee for complete conformity. However, the information furnished in this publication is updated
regularly. Required corrections are contained in the following regulations or can be downloaded
on the Internet.

The current version is available for download on our web site www.iba-ag.com.

Version Date Revision Author Version SW

2.3 08-2023 Plugin paths IJ 8.4

Windows® is a brand and registered trademark of Microsoft Corporation. Other product and
company names mentioned in this manual can be labels or registered trademarks of the corre-
sponding owners.

3 2.3 3

ibaPDA-Plugin Contents

Contents

1	 About	this	documentation ..4

1.1 Target group and previous knowledge ... 4

1.2 Notations .. 4

1.3 Used symbols .. 5

2 System requirements ..6

3	 Introduction ..7

4 How to implement a plugin ...8

4.1 Create plugin project ..8

4.2 Implement IPlugin ..8

4.2.1 Property Name ... 9

4.2.2 Function GetFunctions() ... 9

4.2.3 Function CreateFunctionObject() ... 10

4.2.4 Function ClearAllFunctionObjects() .. 10

4.3 Implement IPluginFunction .. 10

4.3.1 Function Initialize() ...10

4.3.2 Function Calculate() ..11

4.4 Implement IPluginFunctionWithText .. 11

4.5 Implement IPluginFunctionWithTextResult .. 12

4.6 Implement IRententiveFunction or IRetentiveStateFunction12

4.7 Create a protected plugin dll .. 13

4.8 Install plugin ...14

5 How to debug a plugin ..15

5.1 Debug using ibaPDA ...15

5.2 Debug using a test program .. 16

6	 Troubleshooting ..17

6.1 Plugin is not shown in the I/O Manager after copying the DLL17

7 Support and contact ..18

44 2.3

About this documentation ibaPDA-Plugin

1	 About	this	documentation
This documentation describes the function and application of the software

ibaPDA-Plugin.

1.1 Target group and previous knowledge
This manual is aimed at qualified professionals who are familiar with handling electrical and
electronic modules as well as communication and measurement technology. A person is regard-
ed as professional if he/she is capable of assessing safety and recognizing possible consequenc-
es and risks on the basis of his/her specialist training, knowledge and experience and knowl-
edge of the standard regulations.

1.2	 Notations
In this manual, the following notations are used:

Action Notation
Menu command Menu Logic diagram
Calling the menu command Step 1 – Step 2 – Step 3 – Step x

Example:
Select the menu Logic diagram – Add – New function
block.

Keys <Key name>

Example: <Alt>; <F1>
Press the keys simultaneously <Key name> + <Key name>

Example: <Alt> + <Ctrl>
Buttons <Key name>

Example: <OK>; <Cancel>
Filenames, paths Filename, Path

Example: Test.docx

 2.3 5

ibaPDA-Plugin About this documentati on

 1.3 Used symbols
 If safety instructi ons or other notes are used in this manual, they mean:

Danger!

	The	non-observance	of	this	safety	informati	on	may	result	in	an	imminent	risk	
of death or severe injury:

■	 Observe the specifi ed measures.

Warning!

	The	non-observance	of	this	safety	informati	on	may	result	in	a	potenti	al	risk	of	
death or severe injury!

■	 Observe the specifi ed measures.

Cauti	on!

	The	non-observance	of	this	safety	informati	on	may	result	in	a	potenti	al	risk	of	
injury or material damage!

■	 Observe the specifi ed measures

Note

 A note specifi es special requirements or acti ons to be observed.

Tip

 Tip or example as a helpful note or insider ti p to make the work a litt le bit easier.

Other	documentati	on

 Reference to additi onal documentati on or further reading.

66 2.3

System requirements ibaPDA-Plugin

2 System requirements
The following system requirements are necessary for the use of ibaPDA-Plugin:

■	 ibaPDA v8.4.0 or higher

■	 License for ibaPDA-Plugin

Licenses

Order no. Product name Description
30.681210 ibaPDA-Plugin Plugin system to perform custom calculation

on data measured by ibaPDA

7 2.3 7

ibaPDA-Plugin Introduction

3	 Introduction
The ibaPDA plugin system has been designed to enable ibaPDA users to create their own func-
tions that perform custom calculations on data measured by ibaPDA. These functions are exe-
cuted by ibaPDA in real time. The functions can be used in expressions for virtual signals just as
they were built-in functions. They also appear in the expression builder.

To create custom functions you have to create a .NET dll. You can write this dll in any .NET lan-
guage (C#, C++ CLI, VB.NET …).

For information on implementing a plugin, chapter ì How to implement a plugin, page 8.

For information on the different ways you can debug your plugin, see ì How to debug a plugin,
page 15.

There is a sample plugin provided with this package. You can find the sample solution in the
sample directory of this package. It contains two projects.

■	 SamplePlugin is the plugin project that implements six functions: AddMultiple, Integrate,
CountCharacter, GenerateText, LookupText and StoreValue.

■	 MainProgram is a windows forms application that hosts the plugin and that can be used to
test the functions from the plugin.

88 2.3

How to implement a plugin ibaPDA-Plugin

4 How to implement a plugin

4.1 Create plugin project
The plugin consists of a .NET dll. You can create this dll with Visual Studio .NET 2017 or later.

Requirements for the dll plugin:

■	 The dll targets .NET framework 4.8.

■	 The dll is built for Any CPU because ibaPDA can run as a 32 bit or 64 bit application.

1. Create a new project for a class library in your preferred language.

2. Add a reference to ibaPdaPluginInterface.dll.
You can find this dll in the server subdirectory of the ibaPDA installation directory (default:
C:\Program Files\iba\ibaPDA\Server).

This dll contains the definitions of the required interfaces and some required helper classes.

3. Optionally, you can find an xml documentation file ibaPDAPluginInterface.xml in
the bin directory of this package. This file contains some extra information used by the intel-
lisense of Visual Studio.

4.2 Implement IPlugin
Create a new class and derive it from IPlugin. This class is responsible for providing a list of all
functions implemented in this dll and for creating function objects that can calculate the func-
tions.

The interface definition looks like this in C# syntax:

The interface definition looks like this in VB.NET syntax:

 2.3 9

ibaPDA-Plugin How to implement a plugin

4.2.1 Property Name

This property must return the name of the plugin. This name is shown in the function tree of
the expression builder dialog of ibaPDA.

4.2.2	 Function	GetFunctions()

This function must return a list of all the functions implemented by this plugin. The list is an ar-
ray of PluginFunctionInfo objects. The PluginFunctionInfo class has following properties:

string Name: The name of the function. This name appears in the function tree.

int MinArguments: The minimum number of arguments for this function.

int MaxArguments: The maximum number of arguments for this function. This number can be
different from MinArguments if the function supports default arguments.

ResultTypeEnum ResultType: The result type of this function. This can be:

■	 Analog: for analog results

■	 Digital: for digital results

■	 Invariant: if the result type is the same as the type of the first argument

■	 Invariant2: if the result type is the same as the type of the second argument

■	 Invariant3: if the result type is the same as the type of the third argument

■	 Text: for text results

string Prototype: The prototype of the function. This must be a string that looks like this:
 Add('expr1', 'expr2', ‘expr3=0’). The prototype must start with the name of the function. The
function arguments must be between single quotes (‘) and they must be separated by a comma
(,). If there are optional function arguments, then they must come last and the default value
should be mentioned as ‘arg=value’. Text arguments should be surrounded by double quotes (“)
e.g. “’TextArg’”. Notice the single quotes inside of the double quotes.

string Description: The description of what the function does. This text is displayed in the
expression builder dialog of ibaPDA.

FunctionFlags Flags: Some flags that determine how the function can be used.

■	 None: No special flags are needed

■	 CanOptimize: Set this if the result of the function is constant when the arguments are con-
stants. The function is then evaluated only once at the start of the acquisition in ibaPDA.

■	 Hidden: Use this for obsolete functions that should not be shown in the expression builder
but can still be used.

■	 IsRetentive: Set this for a function that can save the last state and reuse it when the acquisi-
tion is restarted. Either IRetentiveFunction or IRetentiveStateFunction must be implemented.

■	 OnlyEvaluateWhenInputsChanged: Set this if the Calculate function should only be called
when the value of the arguments has changed. This flag is only relevant for functions that
return text.

10 2.3

How to implement a plugin ibaPDA-Plugin

4.2.3	 Function	CreateFunctionObject()

This function must return an object that can calculate the requested function. The requested
function is identified by its name. This function is called by ibaPDA for every expression the
function is used in.

For information on the IPluginFunction interface, see ì Implement IPluginFunction, page 10.

4.2.4	 Function	ClearAllFunctionObjects()

This function is called when the acquisition is stopped in ibaPDA. It allows the plugin to cleanup
any resources it may have acquired for the calculations.

4.3	 Implement	IPluginFunction
A plugin function must be implemented by a class that derives from IPluginFunction. A function
has always one result of type double and can have multiple arguments of type double.

The IPluginFunction interface definition looks like this in C# syntax:

The interface definition looks like this in VB.NET syntax:

4.3.1	 Function	Initialize()

This function is called one time by ibaPDA at the start of the acquisition.

■	 xBegin is the timestamp of the first sample. It is expressed as a number of 100 ns ticks.

■	 xBase is the time base of all the inputs and of the output of the function. It is again expressed
as a number of 100 ns ticks.

■	 The inputs array contains values of the first sample of each argument of the function. The
length of the inputs array can be smaller than the maximum number of arguments. In this
case there are some missing optional arguments and you should initialize them to the correct
default value.

This function should do all initializations required for the calculation.

 2.3 11

ibaPDA-Plugin How to implement a plugin

4.3.2	 Function	Calculate()

This function is called for every sample. It gets the values of the arguments as input and it must
calculate the result of the function.

■	 The timestamp x represents the current timestamp (as always expressed in 100 ns ticks).

■	 The inputs array contains the values of each argument at the current timestamp x.

This function is called a lot during the acquisition of ibaPDA so it must be well optimized.
 ibaPDA receives new data for signals in blocks of about 50 ms. This means that if the timebase
of the signals is 1 ms, then it gets 50 samples of a signal at once. ibaPDA then calls the Calculate
function 50 times quickly after each other. Then ibaPDA waits x ms until a new block of data
arrives and then the Calculate function is called 50 times quickly after each other again. So you
have to take this timing into account when you implement your plugin.

4.4	 Implement	IPluginFunctionWithText
If you want to handle text values in your plugin, then you have to implement the IPluginFunc-
tionWithText interface instead of the IPluginFunction interface.

The IPluginFunctionWithText interface definition looks like this in C# syntax:

The interface definition looks like this in VB.NET syntax:

You only have to implement the Initialize and Calculate functions with the textInputs argu-
ments. The inherited Initialize and Calculate functions of the IPluginFunction interface can be
left empty because ibaPDA does not call them. The textInputs array contains the values of the
text arguments in the order they appear in the function prototype. Text arguments and normal
arguments can be mixed.

12 2.3

How to implement a plugin ibaPDA-Plugin

										4.5	 Implement	IPluginFuncti	onWithTextResult		
 If you want to return text values in your plugin, then you have to implement the IPluginFunc-
ti onWithTextResult interface instead of the IPluginFuncti on or IPluginFuncti onWithText.

 The IPluginFuncti onWithTextResult interface defi niti on looks like this in C# syntax:

 The interface defi niti on looks like this in VB.NET syntax:

 You only have to implement the Initi alize and Calculate functi ons with the textInputs arguments
and the text result. The inherited Initi alize and Calculate functi ons of the IPluginFuncti on inter-
face can be left empty because ibaPDA does not call them. The textInputs array contains the
values of the text arguments in the order they appear in the functi on prototype. Text arguments
and normal arguments can be mixed.

 The result of this functi on is a text signal. Text signals are always non-equidistant. This means
that you do not have to generate a text in every Calculate call. You may return null to not gen-
erate a text sample for ti mestamp x. If the functi on fl ag OnlyEvaluateWhenInputsChanged is set
for this functi on, then the Calculate functi on is only called when at least one of the inputs has
changed.

										4.6	 Implement	IRententi	veFuncti	on	or	IRetenti	veStateFuncti	on		
 A retenti ve functi on stores the calculati on result at the stop of the acquisiti on and uses it again
at the start of the acquisiti on. In order to implement such a functi on your class must derive
from IRetenti veFuncti on or IRetenti veStateFuncti on, and the IsRetenti ve functi on fl ag should be
set in the PluginFuncti onInfo.

 The IRetenti veFuncti on interface allows saving and restoring the last calculati on result of the
functi on. Its defi niti on looks like this in C# syntax:

 2.3 13

ibaPDA-Plugin How to implement a plugin

 The IRetenti veStateFuncti on interface allows saving and restoring the last state of the functi on.
The last state is a string. You can decide freely on the structure of this string, e.g. as a concat-
enati on of fl oati ng point values separated by a comma or a semicolon. It is important that this
string is culture invariant. The defi niti on of the interface looks like this in C# syntax:

 The Retenti veState sett er must be implemented in a robust way. It is possible that the incoming
string is not formatt ed as expected. Note that you can change the Retenti veState string manual-
ly in the ibaPDA I/O Manager in the Virtual retenti ve module.

 At the stop of the acquisiti on, ibaPDA reads the value of the Retenti veValue property. ibaPDA
then stores this value as the default value of the retenti ve virtual signal. At the next start of the
acquisiti on, ibaPDA sets the saved value to the Retenti veValue property before the Initi alize
functi on is called.

Note

 If the functi on implements both IRetenti veFuncti on and IRetenti veStateFuncti on,
the implementati on of IRetenti veFuncti on is ignored.

 4.7 Create a protected plugin dll
 You can protect a plugin dll so that the plugin can only be used on an ibaPDA system with a spe-
cifi c license container. To protect a plugin dll you need a password, which you can obtain from
iba AG and is license container specifi c. An ibaPDA system running with the correct license con-
tainer unzips the protected dll in memory and then loads the plugin functi ons.

 The product ibaPDA-Plugin Password Generati on (Order no. 60.000015) is necessary to obtain a
password for protecti on. You have to provide the license number of the target ibaPDA system as
well.

1. Using e.g. 7zip, create a ZIP archive that includes your plugin dll.

2. Set the following parameters:

 Archive format: zip (compression level = normal; compression method = defl ate)

 Encrypti on method: AES-256

14 2.3

How to implement a plugin ibaPDA-Plugin

3. Enter the password you have obtained from iba AG.

You can use the password to protect multiple plugin DLL files used on the same ibaPDA sys-
tem.

4. After you have created the ZIP file, rename the extension of this file from *.zip to *.protec-
tedDLL.

5. Move the zipped plugin dll in the plugin directory
C:\ProgramData\iba\ibaPDA\Plugins\Server\.

This directory only needs the protected plugin dll.

4.8 Install plugin
Installing the plugin for ibaPDA is an easy procedure.

1. Copy the plugin dll to the Plugins subdirectory under the ibaPDA server directory.
Default C:\ProgramData\iba\ibaPda\Plugins\Server\

2. Also copy all dlls that your plugin requires to this directory.

Do not copy ibaPdaPluginInterface.dll to the Plugins\Server directory because it
is already present in the server directory.

3. All dlls located in the Plugins directory are loaded by ibaPDA when the service is started.
If you copy the dll to the directory when the ibaPDA service is already running, restart the
ibaPDA service to load the new plugin.

15 2.3 15

ibaPDA-Plugin How to debug a plugin

5 How to debug a plugin
There are two ways to debug a plugin. You can either write a small test program that hosts the
plugin and calls its functions. The sample solution in this package contains such an example test
program. Or you can also use ibaPDA to host the plugin and debug it by attaching to the ibaPDA
service process.

5.1 Debug using ibaPDA
You can debug the plugin with Visual Studio when it is loaded by ibaPDA.

1. Stop the ibaPDA service.

2. Copy the plugin dll and the plugin pdb file to the Plugins directory.

3. Start the ibaPDA service.

 → ibaPDA loads the plugin.

Tip

You can automate this procedure by writing a batch file. You can find a sample
batch file in the sample solution (CopyPlugin.bat).

4. When the ibaPDA service is running, you can attach to the process with Visual Studio. For
this, run Visual Studio as administrator.

5. In Visual Studio open the Debug menu and select Attach to Process.

6. Find the ibaPdaService.exe process and attach to it.

If you cannot find the ibaPdaService.exe process in the list, then check the Show pro-
cess from all users checkbox.

7. In the field Attach to select the option Manage (.NET 4x code). Do not select Native.

8. Now set breakpoints in your plugin and start debugging it.

If the breakpoints are currently not hit, check whether the plugin dll and pdb files in the
ibaPDA plugins directory match with the dll and pdb files in the bin directory of the Visual
Studio project.

The advantage of this method is that you are now debugging in the real target environment for
your plugin. The disadvantage is that it is not so fast.

16 2.3

How to debug a plugin ibaPDA-Plugin

5.2 Debug using a test program
You can debug the plugin with a test program.

1. Add a test program to your solution. This test program can directly reference the plugin or it
can host it via a PluginManager (see sample solution in this package).

2. Call the CreateFunctionObject function on IPlugin.

3. Call Initialize on the returned IPluginFunction object.

4. Finally, call Calculate for every sample.

The advantage of this method is that it is fast. The disadvantage is that the calling context can
be different than the calling context of the ibaPDA service.

17 2.3 17

ibaPDA-Plugin Troubleshooting

6	 Troubleshooting

6.1	 Plugin	is	not	shown	in	the	I/O	Manager	after	copying	the	DLL
If the plugin is not shown in the I/O Manager although the plugin is in the right directory and
the ibaPDA service has been restarted, it is possible that the dll is copied from a non-trust-
worthy place like from an e-mail.

1. Open the file properties of the dll in Windows explorer.
Right-click on the file and select Properties.

2. If the General tab has a remark that the file is blocked, check the Unblock checkbox and click
Apply.

3. Restart the ibaPDA service.

 → The file should be loaded.

1818 2.3

Support and contact ibaPDA-Plugin

 7 Support and contact
 Support

 Phone: +49 911 97282-14

 Fax: +49 911 97282-33

 Email: support@iba-ag.com

Note

 If you need support for soft ware products, please state the number of the licen-
se container. For hardware products, please have the serial number of the device
ready.

 Contact

 Headquarters

 iba AG
Koenigswarterstrasse 44
90762 Fuerth
Germany

 Phone: +49 911 97282-0

 Fax: +49 911 97282-33

 Email: iba@iba-ag.com

 Mailing address

 iba AG
Postbox 1828
D-90708 Fuerth, Germany

 Delivery address

 iba AG
Gebhardtstrasse 10
90762 Fuerth, Germany

			Regional	and	Worldwide			

 For contact data of your regional iba offi ce or representati ve
please refer to our web site:

 www.iba-ag.com

	1 About this documentation
	1.1 Target group and previous knowledge
	1.2 Notations
	1.3 Used symbols

	2 System requirements
	3 Introduction
	4 How to implement a plugin
	4.1 Create plugin project
	4.2 Implement IPlugin
	4.2.1 Property Name
	4.2.2 Function GetFunctions()
	4.2.3 Function CreateFunctionObject()
	4.2.4 Function ClearAllFunctionObjects()

	4.3 Implement IPluginFunction
	4.3.1 Function Initialize()
	4.3.2 Function Calculate()

	4.4 Implement IPluginFunctionWithText
	4.5 Implement IPluginFunctionWithTextResult
	4.6 Implement IRententiveFunction or IRetentiveStateFunction
	4.7 Create a protected plugin dll
	4.8 Install plugin

	5 How to debug a plugin
	5.1 Debug using ibaPDA
	5.2 Debug using a test program

	6 Troubleshooting
	6.1 Plugin is not shown in the I/O Manager after copying the DLL

	7 Support and contact

